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Pseudospectral (collocation) approximation is shown to give results virtually in- 
distinguishable from spectral (Galerkin) approximation in the case of accurate simula- 
tions of two-dimensional incompressible turbulence, despite the presence of aliasing 
terms. Our results suggest the wider application of the efficient and versatile pseudo- 
spectral method. 

It has recently been shown [l] that pseudospectral approximation [2, Sec. 71 and 
spectral approximation [2, Sec. 21 give similarly accurate results for some simple 
model problems, despite the inclusion of aliasing terms in pseudospectral approxi- 
mation. The results of [l] suggest that the common reference to aliasing “error” is 
a misnomer. In the present paper, we show that aliasing does not lead to gross 
errors in the case of two-dimensional, homogeneous, incompressible turbulence; 
an extensive presentation of the results of spectral simulations of two-dimensional 
turbulence is given elsewhere [3]. 

Pseudospectral approximation uses truncated spectral series to obtain approxi- 
mations to derivatives and imposes the differential equation at selected discrete 
points. On the other hand, spectral approximation attempts to distribute the error 
more uniformly by making the error in the differential equation orthogonal to the 
retained spectral functions [2]. The pseudospectral idea is identical to that of collo- 
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cation [4], except that the term pseudospectral is applied to emphasize the connec- 
tion with spectral series; if a problem has an infinitely differentiable solution, then 
pseudospectral (and spectral) approximation with an N term spectral series 
converges faster than any power of l/N as N + co. The latter property, or the 
closely related one of absence of phase errors, leads to the substantial accuracy [5] 
and efficiency gains of spectral approximations over finite-difference approxi- 
mations. The term pseudospectral also deemphasizes the link of the present 
collocation method with recently proposed finite-element collocation methods [6]. 

We illustrate the technique of pseudospectral approximation for the vorticity- 
streamfunction formulation of two-dimensional incompressible flow: 

$ + v * (UiJ = vvy, (1) 

i = -v2*, (2) 

where 4 is the streamfunction, 5 is the vorticity, u is the incompressible velocity 
field, and v is the kinematic viscosity. 

With periodic boundary conditions of period 2n in both space directions, it is 
appropriate to expand the dependent variables $, 5, u in Fourier series. Pseudo- 
spectral approximation to (l)-(3) is gotten by using the Fourier series to obtain 
accurate values for spatial derivatives at the N2 equally spaced (collocation) points 

Xjk = $ (j, k) (j, k = 0 ,..., N - 1). 

In other words, if 

1;bJ = ,,p,EN h-9 Wip * XSJ, (4) 

the pseudospectral approximation to Vl; at xjR is 

VS(d = C iph) Wip . xd. 
Il~i/<f-N 

(5) 

For now // p I/ < $N means -$N < p1 ,p2 < $N. The transforms (4), (5) are 
efficiently implementable using the fast Fourier transform algorithm [7]. Periodicity 
is not an essential feature of the pseudospectral procedure; other boundary 
conditions (e.g., no-slip [2]) and geometries (e.g., spheroidal [8]) can be handled 
efficiently provided care is taken in choosing the appropriate spectral series. 

Pseudospectral approximation is completed by specifying that products like u[ 
are evaluated locally in physical space so that u[(xjle) = u(xjk) [(xi3. It is here 
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that aliasing interactions are introduced [2]; spectral (Galerkin) approximation 
removes the aliasing interactions in the evaluation of products of grid-point 
functions. In pseudospectral approximation, spectral series are used for evaluation 
of derivatives, while local physical space products are computed locally in physical 
space. The overriding principle of pseudospectral approximation is that nonlocal 
operations like finite-difference approximations to physical-space derivatives and 
convolution-sum approximations to the spectral transform of physical-space 
products are avoided. 

The pseudospectral approximation may be susceptible to numerical instability 
due to the inclusion of aliasing interactions [9]. However, aliasing instability is only 
symptomatic of breakdown of the corresponding solution to the continuum 
equations. A variety of analytical examples show that aliasing instability only 
appears when the solution to the continuum problem develops some structure like 
a shock or a shear layer that can not be resolved on the grid used for the simulation. 
In pseudospectral approximation, insujicient resolution may be evidenced either as 
aliasing instability or as oscillations emanating from the flow singularity, while in 
spectral approximation insu@icient resolution is always evidenced by oscillations. 
Spectral schemes conserve quadratic integrals like kinetic energy in the absence of 
viscous damping and time-differencing errors, so aliasing instability is impossible. 
Analogous behavior occurs in dissipation-free shock calculations [lo] where 
oscillations appear when there is insufficient grid resolution, no matter how small 
the time steps. 

One advantage of applying pseudospectral approximation to the vorticity 
equation written in the conservative form (1) is that aliasing instability is prohibited 
since the quadratic kinetic energy integral, fr J 1 u I2 dx, is conserved in the absence 
of viscous dissipation and time-differencing errors. This follows immediately from 
the fact that pseudospectral approximation to (l)-(3) is equivalent to pseudo- 
spectral approximation to the primitive form of the two-dimensional Navier-Stokes 
equations written in rotation form [5, Eq. (3.4)]; see also the argument given at the 
end of [5, Sec. 41. Notice that, in contrast to spectral approximation, pseudospectral 
approximation is different if (1) is written in nonconservative form; in the latter 
case, there are no apparent quadratic integrals so aliasing instability is possible. 
However, despite this possibility, there do not appear to be differences larger than 
several percent between various pseudospectral approximations, so long as the 
approximations are compared when either gives an accurate simulation of a solution 
of (l)-(3). Nevertheless, we recommend application of pseudospectral approxi- 
mation in a form that is free of aliasing instability, just because these forms seem 
to give slightly more accurate results. 

A simple test problem for the pseudospectral method is given by the ‘color’ 
problem of advection by uniform rotation: the dynamical equation is (1) with 
Y = 0, u = (-Qy, 52x) where Q is the (constant) rotation rate, and 5 a scalar no 
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longer related to u by (2) and (3). We follow the precise conditions of [S, Sec. 21; 
other references are given in [5]. The initial values for 5 are zero except within the 
(discrete grid) constant-5 contours shown in Fig. l(a). A similar calculation was 

FIG. 1. Pseudospectral approximation on a 32 x 32 space grid (N = 32) for the color 
problem (advection by uniform rotation). (a) Initial contours of 5 (i = 0.2, 0.4, 0.6, 0.8). (b) 
Contours after one full revolution of underlying rotation field. Time steps were I /1600 of rotation 
period to ensure negligible time-differencing errors. 

reported previously in [5, Sec. 4(v)] but these results are wrong, because of incorrect 
inclusion of aliasing effects in an existing unaliased (spectral) code. At that time, 
we thought we observed aliasing instability. However, it is easy to prove that the 
eigenvalues of the spatial part of (1) for uniform rotation are pure imaginary 
(cf. [l]), so that instability can only be due to time differencing. We have repeated 
the calculations and now find that pseudospectral approximation works very well. 
Figure l(b) shows the contours after one full revolution of the underlying rotation 
field, using a 32 x 32 (N = 32) space grid. After one quarter-revolution, the 
maximum of 5 is 99 % of its initial maximum, and the negative minimum of 5 is 1% 
of its initial maximum; after one full revolution, the corresponding percentages 
are 98 ‘A and 2 ‘A. Overall, these pseudospectral results are at least as good as any 
given in [5, Figure 2 and Table 11, including spectral approximation on a 32 x 32 
space grid. 
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More critical tests are given by applying pseudospectral approximation to two- 
dimensional turbulence [3]. The initial flow field is chosen to be a realization of a 
statistically homogeneous, isotropic Gaussian ensemble with (isotropic) energy 
spectrum 

E(k) = $k exp(-gk); 

contours of the initial vorticity field are plotted in Fig. 2. For these tests, (l)-(3) 

FIG. 2. Vorticity contours of the initial velocity field chosen for the two-dimensional turbulence 
decay experiments. The velocity field is a realization of a Gaussian, homogeneous, isotropic 
ensemble with energy spectrum E(k) = k exp(--Qk). The field is contoured on the 128 x 128 
space grid used for the numerical experiments. 

are solved using both pseudospectral and spectral approximation on a 128 x 128 
(N = 128) space grid; the same initial realization is used in all the tests. For these 
tests, the spectral cutoff (1 p 11 < &A’ is now interpreted to mean ] p I2 -C 3698, in 
order to take advantage of the fastest transform method for the spectral calculations 
[2, Sec. 61. It turns out that truncation to this circular domain cuts out some aliasing 
interactions and improves slightly the comparison between spectral and pseudo- 
spectral approximations. 

Figures 3-5 show the vorticity contours at t = 1 for Y = 0.0025, 0.0018, 0.001, 
respectively, obtained using the pseudospectral method. In the case of Figs. 3, 4, 
the corresponding figures for the spectral method are identical in detail. The 
spectral results corresponding to Fig. 5 are contoured in Fig. 6; the differences 
between Figs. 5 and 6 are hardly noticeable. Note that t = 1 is well into 
the evolution of these high Reynolds number flow fields and that the vorticity 
fieId is a sensitive measure of small-scale structure. With v = 0.001, the grid-point 
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vorticity maximum is 10.03 at t = 1 using the spectral method and 10.05 using the 
pseudospectral method; the corresponding figures for the vorticity minimum are 
-9.11 and -9.09. With v = 0.0025, 0.0018, the grid-point vorticity maxima and 
minima are identical to three decimal places in the spectral and pseudospectral 
schemes. Further, the two-dimensional skewness factor [3] of the longitudinal 
vorticity derivative at t = 1, v = 0.0018 is 0.6215 pseudospectrally and 0.6218 
spectrally. 

FIG. 3. Vorticity contours at t = 1 with Y = 0.0025 using the pseudospectral method with 
N = 128. Spectral calculation with N = 128 gives nearly identical contours. 

FIG. 4. Same as Fig. 3 but with Y = 0.0018. 
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FIG. 5. Same as Fig. 3 but with Y = 0.001. See Fig. 6 for the corresponding spectral results. 

FIG. 6. Vorticity contours at t = 1 with v = 0.001 using the spectral method with N = 128. 

The results of [3] show that: (i) the spectral simulation with v = 0.0025 is 
virtually error-free at t = 1, including all the detail scale motions shown in 
Figure 3; (ii) the spectral results with v = 0.0018 are in moderate error on scales 
of less than about 3 grid intervals but are quite accurate on larger scale features and 
phases; and (iii) the spectral results with v = 0.001 are accurate for scales larger 
than about 5 grid intervals. For v ,( 0.001, the flow shows signs of incipient 
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vorticity equipartition [ll] and accurate turbulence simulations are not to be 
expected. 

The remarkable resemblance of Figs. 3-6 despite the variation of the Reynolds 
number by a factor exceeding 2 is discussed in detail in [3]. 

We conclude that pseudospectral and spectral approximation are equally 
accurate when faithful simulations of the continuum equations are sought. 
However, pseudospectral approximation has the advantages that it is (i) at Zeast 
a factor two more efficient than spectral approximation [2], and (ii) applicable to 
a wide variety of problems with complicated nonlinearities in complicated 
geometries. 
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